mirror plane that exists in 4, so that, in principle, both 1 and 5 ought to display three separate lines for this $M(CO)_3$ group. The lack of any qualitative difference or any significant quantitative difference in the structures of 1 and 5 leaves us at a loss to explain the observations. Evidently, a very subtle effect is involved.

The change from Mo to W in going from 1 and 5 has essentially no effect on the ease of the carbonyl scrambling processes in this case. This is not particularly surprising, but at the same time, no valid generalization can be based on this one case.

Acknowledgment. We thank the Robert A. Welch Foundation for support under Grant A494. We also thank Drs. B. A. Frenz and J. M. Troup of the Molecular Structure Corporation for assistance and Dr. John R. Kolb for helpful comments.

Registry No. 1, 12320-70-6; 4, 60295-03-6; 5, 60306-24-3; (CH₃CN)₃W(CO)₃, 16800-47-8; ¹³C, 14762-74-4.

Supplementary Material Available: Listing of structure factor amplitudes (10 pages). Ordering information is given on current masthead page.

References and Notes

- (1) F. A. Cotton, D. L. Hunter, and P. Lahuerta, J. Organomet. Chem., 87, C42, (1975).
- F. A. Cotton, P. Lahuerta, and B. R. Stults, Inorg. Chem., 15 1866 (1976). (2)
- R. Burton, L. Pratt, and G. Wilkinson, J. Chem. Soc., 4290 (1960).
 M. R. Churchill and P. H. Bird, *Inorg. Chem.*, 7, 1545 (1968).
- (5) All computations were performed on a PDP 11/45 computer at the Molecular Structure Corporation, College Station, Tex. 77840, using software from the Enraf-Nonius structure determination package Unfortunately the crystal structure of (azl)Mo₂(CO)₆ is disordered⁷ and
- therefore the molecular structure is not precisely known. M. R. Churchill and P. H. Bird, Chem. Commun., 746 (1967).
- (8) (a) A study^{8b} has been made of rotational barriers of substituents on an azulene ring. Although activation parameters are not given, coalescence temperatures between -70 and -95 °C are reported for rotation of $-C(CH_3)_2$ and $-CH(OH)CH_3$ groups occupying the 1 position in 4,6,8-trimethylazulene. (b) M. Oki and N. Nakamura, *Bull. Chem. Soc.* Jpn., 44, 1880 (1971)
- (9) D. S. Ginley and M. S. Wrighton, J. Am. Chem. Soc., 97, 3533 (1975).

Contribution from the Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802

Effects of M^{III}₂TeO₆ Substitutions on the Crystal Structure and Transition Temperature of VO₂

R. R. NEURGAONKAR and RUSTUM ROY*

Received May 5, 1976

The $V_{1-x}M^{III}_{2x/3}Te_{x/3}O_2$, where M = Fe, Cr, or Al, series of solid solutions have been prepared and studied by x-ray diffraction and DTA methods. It has been shown that all the substitutions are partial. Further, the phase transition sequences M_1 \rightarrow M₂ \rightarrow M₄ for V_{1-x}M^{III}_{2x/3}Te_{x/3}O₂, M = Fe or Cr, and M₁ \rightarrow M₂ for V_{1-x}Al_{2x/3}Te_{x/3}O₂ have been examined at the VO₂ end. It is interesting to report that the $T_{\rm tr}$ shifts toward higher temperatures with increasing amounts of $M^{\rm III}_2 TeO_6$ in all the systems.

Introduction

The system VO₂-M^{III}₂M^{VI}O₆ has been the subject of several investigations in recent years. Bernier and Poix¹ were first to recognize the trirutile V₂WO₆ solid solution in the VO₂-WO₂ system and soon after Bernigaud, Bernier, and Michel² reported that V₂WO₆ dissolves in all proportions in VO₂. Further it has been shown that the rutile structure exists over a large composition range and the $T_{\rm tr}$ shifts toward lower temperatures. More recently Neurgaonkar and Roy³ showed that complete solid solution also exists between VO2 and Cr₂WO₆ and demonstrated the existence of the monoclinic (M_2) and the rutile (R) structures, at room temperature, as a function of composition. They also reported that the T_{tr} first decreased and then increased with increasing amounts of Cr_2WO_6 in VO₂. These results suggest that the T_{tr} should shift toward a higher temperature, if both W^{6+} and V^{3+} are replaced by the smaller cations. The present investigation has been undertaken to study the effects of replacing V_2WO_6 by M^{III}_2 TeO₆, where M = Fe, Cr, or Al, on solid solubility, on structural changes, and finally on the transition temperature.

Experimental Section

The starting materials used were V2O5 (Research Organic/Inorganic Chemical Corp.), TeO₂ (Johnson Mathey Chemical), Cr₂O₃, Al₂O₃, and Fe₂O₃ (Fischer Scientific Co.). V₂O₃ was prepared by hydrogen reduction of V2O5 at 800 °C for 8-10 h. MIII2TeO6 phases were first prepared at 750 °C and then samples were weighed by mixing the appropriate amounts of V_2O_5 , V_2O_3 , and $M^{111}_2TeO_6$. Detailed experimental techniques have been described elsewhere.³ The reaction temperature was raised 100 °C/day and kept at 750-800 °C for 2-8 days, after which the samples were quenched and analyzed.

Table I. Synthesis Conditions and Phase Analyses for

System	Compn	Reacn temp, °C	Structure ^a
$\overline{V_{1-r}Al_{2r/2}}$	$0 \le x \le 0.01$	760 °C/8 days	M,
$T\tilde{e}_{x/3}\tilde{O}_{2}$	$0.012 \le x \le 0.12$	760 °C/8 days	M,
	$0.13 \le x \le 0.69$	760 °C/8 days	$M_2 + T_R$
	$0.70 \leq x \leq 1.0$	760 °C/8 days	T _R
$V_{1-x}Cr_{2x/3}$ -	$0 \le x \le 0.01$	800 °C/8 days	M ₁
$Te_{x/3}O_2$	$0.015 \leq x \leq 0.08$	800 °C/8 days	M ₂
	$0.09 \le x \le 0.21$	800 °C/8 days	M ₄
	$0.22 \leq x \leq 0.69$	750 °C/8 days	$M_2 + Cr_2O_3$
	$0.70 \leq x \leq 1.0$	750 °C/8 days	TR
$V_{1-x}Fe_{2x/3}$ -	$0 \le x \le 0.01$	760 °C/2 days	M ₁
$Te_{x/3}O_2$	$0.015 \leq x \leq 0.08$	760 °C/2 days	M ₂
	$0.09 \le x \le 0.30$	760 °C/2 days	M
	$0.31 \leq x \leq 0.64$	750 °C/2 days	Unknown
	$0.65 \leq x \leq 1.0$	750 °C/2 days	T _R

^{*a*} M_1 = monoclinic; M_2 = monoclinic; M_4 = monoclinic; T_R = trirutile.

Room- and high-temperature x-ray powder data were obtained by using a Picker diffractometer with nickel-filtered Cu K α radiation. For phase identification a scanning speed of 1° in $2\theta/\min$ was used.

Results and Discussion

Synthesis of $V_{1-x}M^{III}_{2x/3}Te_{x/3}O_2$. The phase $V_{1-x}M^{III}_{2x/3}Te_{x/3}O_2$, where M = Fe, Cr, or Al, has been prepared by substituting M_2TeO_6 (trirutile) for VO₂ as in

 $(1-x)VO_2 + (x/3)M_2TeO_6 \rightarrow V_{1-x}M^{III}_{2x/3}Te_{x/3}O_2$

Table I summarizes the synthesis conditions and phase analyses for the different phases which have been prepared

AIC603347

in the present study. It has been shown that all of the substitutions are partial.

The synthesis of Te⁶⁺-containing phases was difficult due to the volatilization of Te⁶⁺ from $V_{1-x}Cr_{2x/3}Te_{x/3}O_2$, while $V_{1-x}Fe_{2x/3}Te_{x/3}O_2$ phases melted at ~800 °C. The volatilization of Te⁶⁺ was a great problem in the system

 $V_{1-x}Cr_{2x/3}Te_{x/3}O_2$ when the samples were heated to 800 °C in 1 day. When the firing temperature was lowered to 750 °C, a considerable portion of Cr₂TeO₆ would remain unreacted. This suggests that Te⁶⁺ volatilizes at about 750 °C. Samples with compositions where $0 \le x \le 0.21$ have been found to be single phase and the loss of Te^{6+} by volatilization was negligible when all of the batches were heated very slowly from 400 to 800 °C in 6-8 days. Beyond this composition limit, however, small amounts of Te⁶⁺ escaped and the monoclinic (M_4) and Cr_2O_3 phases were identified in the composition region $0.22 \le x \le 0.69$. The stoichiometry of each phase was established by gravimetric oxidation to V₂O₅-Cr₂TeO₆ and by x-ray diffraction. Attempted synthesis of $V_{1-x}Cr_{2x/3}Te_{x/3}O_2$ in sealed platinum or gold capsules was completely unsuccessful since Te⁶⁺ was reduced to metallic tellurium and formed Pt-Te or Au-Te alloys. The resulting phase was a mixture of the monoclinic phase (M_2) and Cr_2O_3 indicating Te⁶⁺ was completely lost.

It is interesting to note that the volatilization of Te^{6+} was almost eliminated when Cr^{3+} was replaced by Al^{3+} or Fe^{3+} . The solubility of Al₂TeO₆ in VO₂, however, was very limited, 12 mol %. Two phases, the monoclinic (M_2) and Al_2TeO_6 , coexist in the composition range $0.13 \le x \le 0.70$. The solubility of Fe_2TeO_6 in VO₂ was 30 mol %. Beyond this limit the samples with compositions $0.31 \le x \le 0.64$ melted at \sim 800 °C and were poorly crystallized. For this reason, each batch mixture was first heated to 750 °C in silica tubes followed by reaction above the melting temperature for 1-2h. After the mixture was cooled back to 750 °C and after it was annealed for 1-2 days, the sample was quenched. Although the x-ray powder patterns showed a few reflections of the structure (M_4) , complete analysis was difficult due to the limited number of reflections. Further experiments are needed to characterize the system in this area. It seems, however, reasonable that this is a two-phase region $(M_4 + T_R)$.

At the other end, the behavior of VO_2 in $M^{III}_2TeO_6$, M = Fe, Cr, or Al, was more or less similar and the limit of solubility was 30 mol %.

X-Ray Results

When a trirutile is made to react with the monoclinic VO₂, an undistorted rutile structure usually results over a large composition range. Such are the findings by Bernigaud, Bernier, and Michel² and Neurgaonkar and Roy.³ The results of the present investigation on VO₂-M¹¹¹₂TeO₆ systems, however, are exceptions to the rule. The results of the x-ray measurements, at room temperature, confirmed the existence of the intermediate structures at the VO₂ end. Further, the sequences $M_1 \rightarrow M_2 \rightarrow M_4$ for $V_{1-x}M^{111}_{2x/3}Te_{x/3}O_2$, where M = Fe or Cr, and $M_1 \rightarrow M_2$ for $V_{1-x}Al_{2x/3}Te_{x/3}O_2$ have been identified. Although the results of this work on $V_{1-x}\text{Fe}_{2x/3}Te_{x/3}O_2$ in the region $0.31 \le x \le 0.65$ are not conclusively established, it would appear that there exists no rutile solid solution in the $V_{1-x}M^{111}_{2x/3}Te_{x/3}O_2$ systems.

The M₂ and M₄ structures which have been identified in the present work have already been characterized and reported in the VO₂-M^{III}VO₄ systems,⁴⁻¹⁴ where M = Fe, Cr, Ga, or Al. It has been shown that the displacement of the smaller cations M³⁺ and V⁵⁺ from the centers of coordination octahedra causes the distortion of the monoclinic (M₁) to intermediate structures. Further, it can be seen that the smaller the ions, the higher the distortion of the monoclinic (M₁) structure. Since the ionic radii of Te⁶⁺ and V⁵⁺ are similar

Figure 1. Compositional dependence of structure in VO₂-M^{III}₂-M^{VI}O₆ systems.

Figure 2. Phase diagram for $V_{1-x}Al_{2x/3}Te_{x/3}O_2$.

Figure 3. Phase diagram for $V_{1-x}Cr_{2x/3}Te_{x/3}O_2$.

and Te⁶⁺ is coupled with Fe³⁺, Cr³⁺, or Al³⁺, it was expected that M^{III}_2 TeO₆ should stabilize the intermediate structures and at the same time rule out the rutile solid solution in the VO₂-M^{III}₂TeO₆ systems. The observations are in excellent agreement with the experimental results with only one exception. The expected highly distorted triclinic (T) phase in V_{1-x}Al_{2x/3}Te_{x/3}O₂ and the monoclinic (M₃) structure in V_{1-x}M^{III}_{2x/3}Te_{x/3}O₂, M = Cr or Fe, did not appear.

Figure 1 summarizes the crystallographic changes for the entire $VO_2-M^{III}_2M^{VI}O_2$ systems. The results are grouped into three different categories according to the structural changes observed in the various systems. The classification has mainly been made on the basis of mean ionic radii¹⁹ of doping ions and it is interesting to note that it fits nicely for the $VO_2-M^{III}_2M^{VI}O_6$ systems except for $VO_2-Fe_2TeO_6$.

Temperature Dependence of Structures

DTA studies were performed in the temperature range 300-480 K using a Du Pont 990 thermal analyzer. The DTA data obtained are the average values collected from three or four measurements. For all of the measurements the $T_{\rm tr}$ change was ± 2 K. Figures 2-4 show the variation of $T_{\rm tr}$ as a function of $M^{\rm III}_2$ TeO₆ content and also represent a generallized phase diagram for the $V_{1-x}M^{\rm III}_{2x/3}$ Te_{x/3}O₂ systems. It is interesting to report that the $T_{\rm tr}$ shifts toward the higher temperatures with increasing amounts of $M^{\rm III}_2$ TeO₆ for all of the systems. The $V_{1-x}Al_{2x/3}$ Te_{x/3}O₂ solid solution shows a saturation at ~357 K. The results are in excellent agreement with results of Kitahiro and Watanabe¹³ on the $V_{1-2x}V^{\rm v}_xAl_xO_2$ system. They found saturation for

Figure 4. Phase diagram for $V_{1-x}Fe_{2x/3}Te_{x/3}O_2$.

AlVO₄-substituted VO₂ at \sim 354 K.

High-temperature x-ray results show that the rutile (R) structure forms in all of the compositions above the $T_{\rm tr}$. In the particular compositions where $0 \le x \le 0.015$, a sequence $M_1 \rightarrow M_2 \rightarrow R$ has been reported with increasing temperature. The $M_1 \rightarrow M_2$ transition is indicated by a dotted line in Figures 2-4. Precise DTA and x-ray work is needed to characterize the $M_1 \rightarrow M_2$ transition temperature, since it lies close to room temperature.

The overall effect of composition on T_{tr} has been surveyed in other rather comprehensive investigations.^{9,11,12,15-17} It appears that cations with ionic radii smaller than that of V⁴⁺ shift the $T_{\rm tr}$ toward higher temperatures, and vice versa. It is interesting to note that the present results follow this trend for smaller (e.g., Al + Te, Cr + Te, Cr + V, Ge^{4+} , etc.) and larger (V³⁺ + W⁶⁺, Mo⁴⁺, Nb⁴⁺, etc.) cations, but they hold poorly for cations ($Cr^{3+} + Mo^{6+}, Cr^{6+} + W^{6+}, Fe^{3+} + Te^{6+}$) having mean ionic radii close to but slightly higher than that of V⁴⁺. Although the results of the $V_{1-x}Cr_{2x/3}M_{x/3}O_2$, M = W or Mo, solid solution³ are not sufficient to generalize, it was tentatively suggested that the character of each ion should be considered separately, where more than one ion is introduced for V^{4+} . The DTA measurements on $V_{1-x}Fe_{2x/3}Te_{x/3}O_2$ solid solution clearly signify that both Fe³⁺ and Te^{6+} support the T_{tr} shift toward a higher temperature. There exists, however, a controversy on Fe^{3+} substitutions on the transition temperature of VO₂. Futaki and Aoki¹² claimed

that when Fe^{3+} was added to VO₂ the T_{tr} shifted to a lower temperature. According to the results obtained by McChensney and Everhart¹⁰ the T_{tr} shifts toward a higher temperature for Fe^{3+} -doped VO₂. The present work as well as our unpublished data on the system $V_{1-2x}Fe_xNb_xO_2^{18}$ favors the $T_{\rm tr}$ shift toward higher temperatures.

Hence, in surveying all of the experimental results reported on $VO_2 - M^{III}_2 M^{VI}O_2$ systems to date, it is remarkable that the structural changes can be predicted so consistently on the basis of ionic size, but no consensus has yet been reached concerning the mechanism responsible for the transition in VO_2 .

Acknowledgment. The authors extend their thanks to Professor I. R. Harrison for providing the DTA facilities for this work.

References and Notes

- (1) J. C. Bernier and P. Poix, C. R. Hebd. Seances Acad. Sci., Ser. C, 265, 1247 (1967)
- (2)A. Bernigaud, J. C. Bernier, and A. Michel, Rev. Int. Hautes Temp. Refract., 8, 261-268 (1971)
- R. R. Neurgaonkar and R. Roy, Mater. Res. Bull., 11, 361-368 (1976). (4)G. Villeneuve, A. Bordet, A. Casalot, and P. Hagenmuller, Mater. Res. Bull., 6, 119-130 (1971)
- (5) M. Marezio, D. B. McWhan, J. P. Remeika, and J. P. Dernier, Phys. Rev. B, 5, 2541-2551 (1972). G. Villeneuve, M. Drillon, and P. Hagenmuller, Mater. Res. Bull., 8,
- (6) 1111-1122 (1973)
- J. Galy, A. Casalot, J. Darriet, and P. Hagenmuller, Bull. Soc. Chim. Fr., 223 (1967). (7)

- (1967).
 (8) K. Kosuge, J. Phys. Soc. Jpn., 22, 551 (1967).
 (9) T. Mitsuishi, Jpn. J. Appl. Phys., 6, 1060 (1967).
 (10) C. R. Everhart and J. B. McChensney, J. Appl. Phys., 39, 2872 (1968).
 (11) J. Umeda, S. Ashida, M. Kusumoto, and K. Narita, J. Phys. Soc. Jpn., 1040 (1967). 21, 1461 (1966).
- H. Futaki and M. Aoki, Jpn. J. Appl. Phys., 8, 1008–1013 (1969).
 J. Kitahiro and A. Watanabe, Jpn. J. Appl. Phys., 6, 1023–1024 (1967).
 M. Drillon and G. Villeneuve, Mater. Res. Bull., 8, 1199–1208 (1974).
- (15) J. B. McChensney and H. J. Guggenheim, J. Phys. Chem. Solids, 30,
- 25-234 (1969). (16) J. Umeda, H. Kusumoto, K. Narita, and E. Yamada, J. Chem. Phys., 42, 1461 (1965).
- J. B. Goodenough, J. Solid State Chem., 3, 490-500 (1971). (17)
- (18) R. R. Neurgaonkar and R. Roy, submitted for publication.
- (19)Ionic radii used in the present classification are taken from the work R. D. Shannon and C. T. Prewitt, Acta Crystallogr., Sect. B, 25, 925 (1969); 26, 1046 (1970).

Contribution from the Institute of Scientific and Industrial Research, Osaka University, Suita, Osaka 565, Japan

Synthesis and Characterization of the Organic Derivatives of Zirconium Phosphate¹

SHOJI YAMANAKA²

Received March 4, 1976

When γ -zirconium phosphate is immersed in an aqueous solution of ethylene oxide, it is converted into new phases with enlarged basal spacings. Unlike usual intercalated complexes, the resulting phases are very stable to heating up to about 200 °C and to washing with various solvents. In alkaline solution, they are hydrolyzed into the phosphoric ester of ethylene glycol and zirconium hydroxide gel. Analysis by infrared spectroscopy and hydration studies on the new phases indicate that ethylene oxide is not merely adsorbed but suffers ring scission upon reaction with the phosphate groups on the interlamellar surfaces of γ -zirconium phosphate. The amount of reacted ethylene oxide and the basal spacing of the organic derivative vary depending upon the reaction conditions, and there is a linear relation between the two. A possible structural model for the organic derivative is proposed on the basis of this linear relation.

Introduction

Many inorganic substances with a layered structure form intercalated complexes with polar organic molecules. Such complexes have been reported on clay minerals,³⁻⁵ transition metal chalcogenides,^{6,7} hydroxy salts,^{8,9} iron(III) oxychloride¹⁰ and others.¹¹ In most of these complexes adsorbed species are loosely bound to the host layers and are easily removed by evacuation or may be exchanged with other polar molecules, such as water in the atmosphere. If adsorbed molecules were

AIC60164Y

linked by a covalent bond to the interlamellar surfaces, however, more stable complexes would be formed. These are considered to belong to the class of organic derivatives rather than to the class of sorption complexes of layer crystals. In the organic derivatives, the interlamellar surfaces as well as the outer surfaces of the layer crystals react with organic molecules. Therefore, they are considered as organic derivatives of inorganic sheet polymers or as grafting products of organic chains onto inorganic sheet polymers.